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When fitting hierarchical regression models, maximum likelihood (ML) esti-

mation has computational (and, for some users, philosophical) advantages

compared to full Bayesian inference, but when the number of groups is small,

estimates of the covariance matrix (S) of group-level varying coefficients are

often degenerate. One can do better, even from a purely point estimation per-

spective, by using a prior distribution or penalty function. In this article, we use

Bayes modal estimation to obtain positive definite covariance matrix estimates.

We recommend a class of Wishart (not inverse-Wishart) priors for S with a

default choice of hyperparameters, that is, the degrees of freedom are set equal

to the number of varying coefficients plus 2, and the scale matrix is the identity

matrix multiplied by a value that is large relative to the scale of the problem.

This prior is equivalent to independent gamma priors for the eigenvalues of S
with shape parameter 1.5 and rate parameter close to 0. It is also equivalent to

independent gamma priors for the variances with the same hyperparameters

multiplied by a function of the correlation coefficients. With this default prior,

the posterior mode for S is always strictly positive definite. Furthermore, the

resulting uncertainty for the fixed coefficients is less underestimated than under

classical ML or restricted maximum likelihood estimation. We also suggest an

extension of our method that can be used when stronger prior information is

available for some of the variances or correlations.
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Hierarchical or mixed-effects regression models are increasingly popular in
applied statistics and can be viewed as Bayesian at the following two levels: A
prior distribution is assigned to the varying coefficients, and the parameters of
that prior distribution themselves are given a hyperprior. The family of models
can be written in general terms as follows: Data are in groups j ¼ 1, . . . J. For
each group j, there is a response vector yj and two data matrices, Xj and Zj, that
have fixed and varying coefficients, respectively. The data model is
pðyjjXjβþ ZjbjÞ, where β is the vector of fixed coefficients and bj is the vector

of regression coefficients that varies by group. The vectors bj are modeled as
independent draws from a prior distribution, p(bj), given some hyperparameters.
We shall assume a normal model for the varying coefficients, so that bj ~ N(0, S).
The model could also include a nonzero mean vector or a group-level regression
structure for the hyperprior distribution, but these can be folded into the fixed
coefficients in the data model without loss of generality.

There is a rich literature on full Bayesian inference for hierarchical regres-
sions. There is also an empirical Bayes version in which the hyperparameters
(in this case, S) are estimated via maximum likelihood (ML) and then inference
for the coefficients is performed conditional on the estimated S. From the
Bayesian perspective, the empirical Bayes approach is suboptimal, both
because it avoids the use of any prior information on S and because it under-
states posterior uncertainty. From a pragmatic perspective, however, we recog-
nize that the point estimation approach has two advantages that give it great
appeal to many users. First, existing software such as lme4 in R and various com-
mands in Stata allow such models to be fit fast and reliably for moderate-sized
data sets, whereas software for Markov chain Monte Carlo simulation for full
Bayes inference is not yet so immediately practical. Second, the non-Bayesian
motivation behind point estimation is attractive to practitioners who want the
benefits of partial pooling and hierarchical modeling without needing to spe-
cify prior information or fully buy into the Bayesian paradigm.

The subject of this article is the use of Bayesian ideas and methods to pro-
duce better inferences for hierarchical models via better point estimates of the
hyperparameters. In that sense, this work falls into a long tradition of Bayesian
tools used for practical non-Bayesian inferences (e.g., Agresti & Coull, 1998).
Bayes modal (BM) estimation (or penalized likelihood) has also been used to
obtain more stable estimates in item response theory (e.g., Mislevy, 1986;
Swaminathan & Gifford, 1985; Tsutakawa & Lin, 1986) and to avoid boun-
dary estimates (or logit parameters tending to +1) in log-linear models
(Galindo-Garre, Vermunt, & Bergsma, 2004), logistic regression (Gelman,
Jakulin, Pittau, & Su, 2008), varying-intercept models with constant coefficients
(Chung, Rabe-Hesketh, Dorie, Gelman, & Liu, 2013), random-effects
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meta-analysis models (Chung, Rabe-Hesketh, & Choi, 2013), and latent class anal-
ysis (Galindo-Garre & Vermunt, 2006; Maris, 1999). Such an approach has also
been used to obtain nondegenerate covariance matrices in factor analysis (Martin
& McDonald, 1975), in finite mixtures of normal densities (Ciuperca, Ridolfi, &
Idier, 2003; Vermunt & Magidson, 2005), and in multivariate regression (Warton,
2008). In varying intercept models, the Stein loss function (Srivastava & Kubokawa,
1999) and an extension of MANOVA estimation (Amemiya, 1985) have been used
for obtaining nonnegative definite covariance estimators.

The key problem solved by our method is the tendency of ML estimates of S
to be degenerate, that is, on the border of positive definiteness, which corre-
sponds to zero variance or perfect correlation among some linear combinations
of the parameters. When the ML estimate of a hierarchical covariance matrix
is degenerate, this often arises from a likelihood that is nearly flat in the relevant
dimension and just happens to have a maximum at the boundary.

Our solution is a class of weakly informative prior densities for S that go to zero
on the boundary as S becomes degenerate, thus ensuring that the posterior mode
(i.e., the maximum penalized likelihood estimate) is always nondegenerate. We
recommend a class of Wishart priors with a default choice of hyperparameters, that
is, the degrees of freedom is the dimension of bj plus 2 and the scale matrix is the
identity matrix multiplied by a large enough number. This prior can be expressed
as a product of gamma(1.5, y) priors on the eigenvalues of S or as a product of
gamma(1.5, y) priors on variances of the varying effects with rate parameter y
! 0 and a function of the correlations (a beta prior in the two-dimensional case).
In the varying-intercept model (Chung, Rabe-Hesketh, Dorie, et al., 2013) and
random-effects meta-analysis model (Chung, Rabe-Hesketh, & Choi, 2013), the
gamma(1.5, y) prior successfully avoids boundary estimates while producing
estimates that are consistent with the data. We show that this is also true for the
default Wishart prior proposed in this article for general varying coefficient models.

In a simulation study and an education example presented later, the default
Wishart prior always gives nondegenerate estimates of S (in particular, nonperfect
correlation coefficients) without decreasing the log likelihood substantially. The
BM estimators of the standard deviations and correlations using the default Wishart
prior have better statistical properties than the (restricted) ML estimators.

When prior information is available for specific standard deviations or cor-
relations, additional penalty functions may be included. Specifically, if the
prior most plausible value for a standard deviation or correlation parameter
is s* or r*, respectively, then we propose multiplying the Wishart prior by the
gamma(2, 2/s*) or N(r*, .252) densities. This assigns more prior probability
around the preferred values while exploiting the property of the Wishart prior
that it ensures that the estimates remain positive definite.

The outline of the article is as follows. First, we illustrate the boundary esti-
mation problems encountered in ML estimation of hierarchical variance and cov-
ariance parameters. Then, we introduce the default Wishart prior for S and
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investigate its properties. Next, additional penalty functions are proposed that
incorporate further prior knowledge for some of the parameters. Finally, our
method is applied to an example from education research and simulated data.

Boundary Estimation Problem

Consider the varying-coefficients model,

yij ¼ xT
ij βþ zT

ij bj þ eij; i ¼ 1; . . . ; nj; j ¼ 1; . . . ; J ; ð1Þ

where yij is the response variable for unit i in group j, xij is a p-dimensional cov-
ariate vector with constant (or fixed) coefficients β, zij is a d-dimensional covari-

ate vector with varying coefficients bj ~ N(0, S), and "ij % N 0;s2
"

! "
is a residual

for each observation. We further assume that bj and "ij are independent of each
other and of the covariates (and suppress conditioning on covariates througout
the paper).

Non-Bayesian Point Estimation

For each j, yj ¼ y1j; . . . ; ynjj

! "
% N Xjβ;Vj

! "0
, where Xj is a nj & p matrix with

xT
ij in the ith row, Vj ¼ ZjSZT

j þ s2
"I , and Zj is a nj & d matrix with zT

ij in the ith

row. The log-likelihood function is given by:

log p yjβ;S;s2
"

! "
¼ ' 1

2

XJ

j¼1

log jVjjþ
X

j

yj ' Xjβ
# $T

V'1
j yj ' Xjβ
# $" #

; ð2Þ

where the constant term, '(N/2)log(2!), has been dropped. The ML estimator is
obtained by maximizing the log-likelihood function.

It is known that the ML estimator of the covariance matrix is biased for finite
samples (Lehmann & Casella, 1998), and an often-preferred option is restricted
maximum likelihood (REML; Patterson & Thompson, 1971), as it takes into
account the degrees of freedom for the fixed coefficients β. Harville (1974)
showed that the REML estimator can be derived by specifying flat prior distribu-
tions for β, marginalizing over β, and maximizing the marginal (or restricted)

likelihood with respect to S and s2
" . The restricted log-likelihood function is

given by:

log pR yjS;s2
"

! "
¼' 1

2
log

XJ

j¼1

X T
j V'1

j Xj

%%%%%

%%%%%þ
XJ

j¼1

log jVjj

"

þ
XJ

j¼1

yj ' Xjβ̂
# $T

V'1
j yj ' Xjβ̂
# $#

;

ð3Þ

up to a constant, where
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β̂ ¼
XJ

j¼1

X T
j V'1

j Xj

 !'1 XJ

j¼1

X T
j V'1

j yj

 !

:

Singular Estimates of S using ML and REML

ML and REML often yield singular (i.e., nonpositive definite) estimates of S.
This boundary includes the cases where some varying coefficients have zero var-
iance or a varying coefficient is a linear combination of the other varying
coefficients.

We present two simulation studies to demonstrate how often singular esti-
mates of S occur in the varying-coefficients model. In the first study, we consider
a model with two-dimensional varying coefficients, that is, a varying intercept b0j

and a varying slope b1j. We set the group size to n¼ 10 and the number of groups
to J¼ 5 or 10. A covariate that varies within group only was generated from N(0,
1) and group-mean centered. The varying coefficients (b0j, b1j) were generated
from N(0, s2I2) with s ¼ 0.25, 0.5, 0.75, 1. Setting the correlation to 0 corre-
sponds to the best-case scenario in the sense of being furthest from the boundary.

The within-group variance s2
" was set to 1 and the fixed coefficients b0 and b1

were set to 0. For each of 1,000 random samples of data from the model, we
obtained ML and REML estimates using lmer (Bates & Maechler, 2010) in R.

Figure 1a shows the proportion of ML estimates of S on the boundary for the
two-dimensional case. For J ¼ 5 groups, 87% of the ML estimates are singular
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FIGURE 1. Proportion of data sets, out of 1,000, where the maximum likelihood (ML)

estimate of the covariance matrix is singular. (a) Two-dimensional case: When s ¼
.25, 87% of the ML estimates are singular for J ¼ 5. As s and J increase, the proportion

decreases but is greater than 40% for the conditions considered. (b) Two to five dimen-

sions s ¼ 1: As the dimension of S increases, there is a rapid increase in the probability

of the estimate being degenerate.
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when s¼ 0.25 and the proportion decreases as s increases but remains as high as
72% when s ¼ 1. For J ¼ 10 groups, the proportions are smaller than those for
J ¼ 5 but still, in more than 40% of the simulations, the likelihood is maximized

at a singular Ŝ. The REML estimator yields smaller proportions of singular esti-
mates with a similar trend (not shown). For J ¼ 10, 79% and 64% of the REML
estimates are singular when s ¼ 0.25 and s ¼ 1, respectively. For J ¼ 10, the
proportion is reduced to 69% and 35% when s ¼ 0.25 and s ¼ 1, respectively.

Our second simulation study considers various dimensions, from d ¼ 2 to
d ¼ 5, each time with a varying intercept and d ' 1 varying slopes for n ¼
10 and J ¼ 5 or 10. The d ' 1 covariates were independently drawn from
N(0, 1) and centered at their group means as in the previous simulation. The

varying coefficients bj were drawn from N(0, Id) and s2
" was set to 1.

Figure 1b presents the proportion of replicates where the ML estimate Ŝ is sin-
gular. As the number of dimensions increases, this proportion increases rapidly,
exceeding 95% with five varying coefficients for both J ¼ 5 and J ¼ 10. For
REML, the proportions of singular estimates are slightly lower than for ML but
follow a similar pattern and exceed 35% across all simulation conditions.

In some contexts, singular estimates of the covariance matrix are acceptable
or considered as an indication of structural misspecification of the model. In the
varying-intercept model, a negative group-level variance estimate is sometimes
permitted if the model is viewed as a marginal model for the responses, given the
covariates where only the sum of the group-level and within-group variance must
be positive (Verbeke & Molenberghs, 2000, pp. 52–53). In factor analysis and
structural equation models, a negative variance estimate, called a Heywood case,
is sometimes interpreted as model misspecification, especially if the null
hypothesis that the variance is nonnegative can be rejected (Kolenikov & Bollen,
2012). However, this article takes a hierarchical perspective of the multilevel
linear model, where the intercepts and slopes vary due to omitted group-level
variables. Therefore, the variances of the varying coefficients must be
nonnegative, and perfect correlations among linear combinations of varying
coefficients are regarded as unrealistic.

Weakly Informative Wishart Prior for S

We propose posterior modal estimation with a prior on S, implicitly assum-
ing uniform priors for the other parameters. With a prior p(S), the log-posterior
function can be written as follows:

log p β;S;sejyð Þ ¼ log p yjβ;S;seð Þ þ log pðSÞ þ c; ð4Þ

and we find the mode of log p β;S;sejyð Þ. This approach can also be viewed as
maximum penalized likelihood estimation where log pðSÞ is a penalty function.
We consider a family of Wishart (not inverse-Wishart) densities for the prior on
S. The Wishart density function onSwith hyperparameters " andC is defined by:
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pðSÞ ¼
jSjð"'d'1Þ=2 exp ' 1

2 trðC'1SÞ
& '

2"d=2jCj"=2!dð"=2Þ
; " > d ' 1;C > 0; ð5Þ

where !dð"=2Þ ¼ !dðd'1Þ=4
Qd

j¼1 !ð"=2þ ð1' jÞ=2Þ, " is the degrees of free-

dom, and C is a scale matrix with EðSÞ ¼ "C.
If we set C to be a diagonal matrix (1/2y)Id, the Wishart density of S in

Equation 5 can be written as:

pðSÞ ¼ yd"=2

!dð"=2Þ
jSjð"'d'1Þ=2 exp 'ytrðSÞð Þ

¼ yd"=2

!dð"=2Þ
Yd

r¼1

#ð"'d'1Þ=2
r exp 'y#rð Þ

/
Yd

r¼1

g #r
" ' d þ 1

2
; y

%%%
( )

;
ð6Þ

where #1, . . . , #d are the eigenvalues of S and gðxja; yÞ is the gamma(a, y) den-

sity with shape parameter a and rate parameter y, gðxja; yÞ ¼ ya'1

!ðaÞ x
a'1 expð'xyÞ.

In the previous equations, note that we do not transform the density of S to the
density of eigenvalues, but just rewrite Equation 5 as a function of eigenvalues
without including a Jacobian term.

As a default choice, we propose " ¼ d þ 2 and y ! 0. In practice, we can
choose a sufficiently small number for y, for example, y ¼ 10'4 or 10'5. If
these two values of y lead to almost the same parameter estimates, we can con-
sider the choice of y to be sufficiently close to the limit 0. In order to avoid
dependency on the scale of the response variable, we can also use an improper

prior jSjð"'d'1Þ=2, which is the same as the Wishart prior up to constant in the
limit y ! 0 (Chung, Rabe-Hesketh, Dorie, et al., 2013). This prior is propor-
tional to independent gamma(1.5, y) densities of the eigenvalues as observed
in Equation 6. If S is a diagonal matrix, this prior implies gamma(1.5, y) priors
on the diagonal elements of S, which is equivalent to gamma(2, y) priors on the
standard deviations when y! 0. If S is not diagonal, we obtain gamma(1.5, y)
priors on the variances and a function of the correlations.

The advantage of this family of density functions is that they equal zero at the
boundary—thus, the BM or penalized likelihood estimate for S will never be
degenerate—but the densities move away from zero when S moves off the
boundary, so that the posterior mode can be arbitrarily close to degeneracy if this
is what the data demand. In contrast, various other families of models do not have
these properties, making them less desirable when used for the purpose of BM
point estimation. The inverse-Wishart family of density, one of the most com-
monly used priors for S in the full Bayesian inference, is also zero at the
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boundary. However, it tends to assign an excessive penalty near the boundary

because it is a function of S'1 and jSj'1 while the Wishart density is a function
of S and jSj.

Alternative choices of " and y can be considered but " and y larger than the
default choice will make the prior more informative. This behavior might be
preferable if a plausible value of S is available. In the next section, we suggest
including additional prior information about any specific standard deviation by
multiplying the default prior by an additional penalty function, which can be
viewed as a special case of the Wishart prior with larger " and y.

Priors on the covariance matrix in the varying-coefficients model have been
investigated by several authors in the context of full Bayesian modeling. Daniels
and Kass (1999) investigated nonconjugate Bayesian estimation of covariance
matrices in hierarchical models including an inverse-Wishart prior on covariance
matrices with unknown scale and degrees of freedom and a normal prior on
Fisher’s z-transformed correlations. Barnard, McCulloch and Meng (2000)
decomposed S ¼ DiagðsÞRDiagðsÞ where s is a vector of standard deviations
and R is the correlation matrix, which is assigned marginal or jointly uniform
priors. O’Malley and Zaslavsky (2005) propose a scaled inverse Wishart, a
decomposition similar to that of Barnard, McCulloch, and Meng (2000) except
that the central matrix R itself has an inverse-Wishart distribution rather than
being constrained to be a correlation matrix. Our approach is different from
these others in being explicitly intended not for full Bayes inference but as a
tool to obtain positive definite posterior modal estimates. As such, our concerns
are different from those involved in constructing traditional Bayesian priors.

Unlike posterior mean estimation, BM estimation does not involve simulation
and is computationally as efficient as ML estimation. By modifying existing ML
estimation procedures, gllamm (Rabe-Hesketh, Skrondal, & Pickles, 2005) in
Stata and lmer (Bates & Maechler, 2010) in R, we have developed software to
find the maximum of the penalized likelihood. The modified gllamm is available
from www.gllamm.org and blmer, the modified lmer function, can be found in
the blme package available from the Comprehensive R Archive Network.

Varying-Intercept Models: d ¼ 1

The varying-intercept model is a special case of the model in Equation 1 with
d ¼ 1, given by:

yij ¼ xT
ij βþ bj þ eij;

where bj % Nð0;s2
bÞ and eij % Nð0;s2

eÞ. The Wishart prior in Equation 6 is

equivalent to a gamma("/2,y) prior on s2
b. With the default choice of hyperpara-

meters, " ¼ 3ð¼ d þ 2Þ and y ! 0, the Wishart prior coincides with a

gamma(1.5, y) prior on s2
b.
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Wheny! 0, the gamma(1.5,y) prior ons2
b has a density function proportional to

sb, which is also proportional to the gamma(2,y) prior onsb. The gamma(2,y) prior
on sb is recommended as a weakly informative prior for avoiding estimates of sb

equal to zero in the varying-intercept model (Chung, Rabe-Hesketh, Dorie, et al.,
2013) and in random-effects meta-analysis models (Chung, Rabe-Hesketh, & Choi,
2013). Since the gamma(2, y) prior is 0 atsb¼ 0, the posterior density is also 0 atsb

¼ 0 and thus the posterior mode of sb is always strictly positive. In addition, since
the gamma density has a positive constant derivative atsb¼ 0, the gamma(2,y) den-
sity increases linearly at zero. It follows that the profile likelihood ofsb (maximized
over all the other parameters) dominates the posterior density ofsb if the likelihood
is strongly curved nearsb¼ 0. That is, the prior does not rule out positive values near
zero if they are supported by the likelihood. Chung, Rabe-Hesketh, Dorie, et al.
(2013) show that the posterior mode is approximately one standard error away from
zero when the ML estimate of sb is zero. Finally, the estimator behaves reasonably
well in terms of mean squared error of parameter estimates and coverage of
confidence intervals for fixed parameters.

In the context of small area estimation, strictly positive group-level variance
estimators have been proposed for the Fay and Herriot model (1979), a varying-
intercept model for aggregated group-level data and known heterogeneous
within-group variances. Adjustment for density maximization (Li & Lahiri, 2010;

Morris, 2006; Morris & Tang, 2011) applies a penalty term !ðs2
bÞ ¼ ðs2

bÞ
c'1 to

the likelihood, and this approach turns out to be equivalent to posterior modal esti-
mation with a gamma(a, y) prior on sb with a ¼ 2cþ 1 and y! 1. Therefore, for
this specific varying-intercept model, our estimator shares the properties of adjust-
ment for density maximization, such as predictions of the group means being mini-
max for mean squared-error loss when the within-group variances are equal and
c ( 1 (Morris & Tang, 2011).

Varying-Intercept and Varying-Slope Models: d ¼ 2

When d¼ 2, the model includes a varying intercept and a varying slope of one
covariate, written as:

yij ¼ xT
ij βþ b0j þ b1jzij þ "ij;

where ðb0j; b1jÞ % Nð0;SÞ and "ij % Nð0;s2
"Þ.

As shown in Equation 6, with the default choice " ¼ d þ 2, the Wishart den-
sity can be written as a product of gamma(1.5, y) densities on the eigenvalues #1

and #2. For the bivariate case, we can also express the default prior as a function

of the variances (s2
1 and s2

2) and the correlation (r) between the two varying
effects b0j and b1j, given by:

p Sð Þ / jSj1=2 ¼ s1s2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1' r2

p
: ð7Þ
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This expression implies that Wishart(4, (1/2y)Id) with y ! 0 is equivalent

to the joint density of independent gamma(1.5, y) priors on both s2
1 and s2

2,
and a beta(1.5, 1.5) prior on (r þ 1)/2.

Since the beta(1.5, 1.5) prior on (r þ 1)/2 is zero at the boundaries r ¼+1,
the posterior mode of S cannot be attained at any matrices with perfect correla-
tion. In addition, the beta(1.5, 1.5) density function increases rapidly as r
approaches 0 from +1 and so does not rule out values close to +1. The left panel
of Figure 2 shows the beta(1.5, 1.5) density on (r þ 1)/2. Whereas gamma(2, y)
increases linearly at 0, the slopes of beta(1.5, 1.5) at +1 are +1. Therefore,
compared to the gamma(2, y) prior for s1 and s2, the beta(1.5, 1.5) for r is less
informative with lower penalties on the values around the boundaries.

The beta priors have been used to avoid boundary estimates of the probability
parameter p of the binomial distribution. When the sample proportion is 0 or 1, the
traditional Wald confidence interval for p degenerates to the point estimate. To
avoid such boundary estimates, Agresti and Coull (1998) specified a beta(2, 2)
prior on p. The posterior mean of p then is the sample proportion after adding two
successes and two failures to the data. Compared with the beta(2, 2), the beta(1.5,
1.5) tends to assign less penalty at the boundaries and so is less informative.

Higher Dimensional Case: d ) 3

Similar to the case d¼ 2, the default prior for d) 3 can be written as a product
of sr, r ¼ 1, . . . , d and a function of rrs, the correlation between the rth and sth
varying effects (0 < r < s, s ¼ 2, . . . , d). For example with d ¼ 3, the Wishart(5,
(1/2y)I3) prior with y ! 0 can be written as:

pðSÞ / jSj1=2 / s1s2s3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1' r2

12 ' r2
23 ' r2

13 þ 2r12r23r13

q
: ð8Þ
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FIGURE 2. Conditional density of rij with Wishart (dþ 2, (1/2y)I) on S, y¼ 10'4, where

the other parameters are randomly generated from the Wishart distribution for 20 repli-

cates. When d¼ 2, the conditional density is beta(1.5, 1.5), but for larger d, the curves are

more scattered and the supports of the densities become narrower.

Chung et al.

145

 at COLUMBIA UNIV on April 30, 2015http://jebs.aera.netDownloaded from 

http://jebs.aera.net


This is a product of gamma(1.5, y) priors on the variances and a function
of the correlations. This function depends on the squares of the correlations,
as in the two-dimensional case (Equation 7), but also contains the product of
three correlations, which comes from the constraint jSj > 0 that defines the
support of Wishart distributions. Because of this constraint, the Wishart
prior automatically restricts the posterior mode of S to be strictly positive
definite.

The graphs in Figure 2 show the conditional densities of r12 when S follows
the Wishart(d þ 2,(1/2y)Id), y ¼ 10'4. The curves are the density of r12 con-
ditional on the other parameter values (standard deviations and the other cor-
relations) that are randomly generated from Wishart(d þ 2,(1/2y)Id) with 20
replicates. When d ¼ 2, the correlation follows beta(1.5, 1.5) as discussed pre-
viously. When d ¼ 3, the curves have distinct supports, defined by

1' ðr12Þ
2 ' ðr0

23Þ
2 ' ðr0

13Þ
2 þ 2r12r0

23r
0
13 > 0 where r0

13 and r0
23 for each

replicate are given by randomly generated S. The curves for d ¼ 5 are more
scattered and the supports of the densities tend to be narrower than for d ¼
2 and 3 due to more restrictions required for the higher dimensional S to be
positive definite.

The marginal prior densities of rrs are displayed in Figure 3 for d ¼ 2, 5,
and 10. With 10,000 replicates, d-dimensional matrices were randomly gener-
ated from the Wishart(d þ 2,(1/2y)I) with y ¼ 10'4 and 10,000(d ' 1)(d ' 2)/
2 correlation coefficients were used to construct the histograms. For d ¼ 2
(left), the distribution of the correlation coefficient matches the beta(1.5,
1.5) density, shown as a solid curve. As d increases, the marginal prior density
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FIGURE 3. Marginal density of rrs with Wishart (d þ 2,(1/2y)I), y ¼ 10'4. When d ¼ 2,

the marginal density of r is equivalent to beta(1.5, 1.5) on (r þ 1)/2 (solid curve). As d
increases, the marginal density has more mass around 0 due to the positive semidefinite

constraint of the covariance matrix.
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of rrs becomes more concentrated around zero because of the positive definite-
ness of S.

Incorporating Additional Prior Information

In the previous section, we suggested the Wishart(d þ 2,(1/2y)I) with y !
0 as a default prior when no other information is available. If a researcher has
additional prior knowledge about any specific standard deviations or correla-
tions, he or she might want to adjust the prior to incorporate such information.
In this section, we suggest multiplying the Wishart prior by functions of the
parameters on which we have information. Because the Wishart density
ensures that S is positive definite, we can choose the functions for the other
parameters to be intuitive and easy to specify without regard for the parameter
space.

Ifs* is a plausible value forsr, then the gamma(2,2/s*) density is recommended
as a penalty. Recall that the default Wishart prior is proportional to gamma(2,y)
priors with y ! 0 on each standard deviation, multiplied by a function of the
correlations. When the gamma(2,2/s*) density of s is multiplied by the Wishart,

the part including sr becomes s2
r expð'2sr=s*Þ. This is proportional to the

gamma(3,2/s*) density that has its mode at sr¼ s*. The gamma prior with shape
parameter greater than two assigns more penalty near zero than for shape parameter
equal to two. Therefore, we have a more informative prior with mode at s*.

If any specific correlation rrs is believed to be close to r*, we can incorpo-
rate this prior information by multiplying the default Wishart prior by a
N(r*,t2) density. As usual, the scale parameter t can be chosen depending
on the prior uncertainty regarding rrs. A possible default choice is t ¼ .25
because it is the standard deviation of the beta(1.5,1.5) distribution. Figure 4
displays the shape of conditional prior densities of r12 with additional normal
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FIGURE 4. Conditional prior density of r12 with additional N('.5, .252) (left and middle)

and N(.5, .252) (right) densities multiplying the default Wishart prior. The Wishart prior is

on three-dimensional S and r13 and r23 are fixed as 0 (left) and .5 (middle and right). The

additional normal penalty makes the prior density skewed toward the prior value, but still

enforces positive definiteness.
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priors in the three-dimensional case. When r13 and r23 are fixed at zero (left),
the default Wishart(5,(1/2y)I3) prior (solid curve) is pretty flat. In order to
incorporate the prior information, for example, r* ¼ '.5, the Wishart is multi-
plied by the N('.5, .252) density, and then the prior mode moves toward '.5
(dashed curve). When r13 and r23 are .5 (middle and right), the support of the
Wishart for r12 is on ['0.5, 1] because of the constraint of positive definite-
ness. When our prior value is on the boundary r* ¼ '.5 (middle), the Wishart
multiplied by N('.5, .252) density is skewed toward '.5, but still enforces pos-
itive definiteness. When the prior value is inside the support, r* ¼ '.5, the
resulting density is less skewed (right).

The default prior for r in the two-dimensional case is beta(1.5, 1.5), and so it
would seem natural to use the beta family for rrs when constructing an additional
penalty. However, the parameters of the normal distribution are more intuitive
because they represent the prior mean (and mode) and variance. In addition, since

the positive definiteness of Ŝ is already guaranteed by the Wishart prior, estimates
ofS remain positive definite regardless of the type of additional penalties that multi-
ply the Wishart prior. Furthermore, computation is no problem in any case; includ-
ing any closed-form prior density adds essentially no cost to the optimization.

Example: A Varying Intercept, Varying Slope Model in Education Research

We illustrate our approach using a study of Heller et al. (2007) on the effects of
the Mathematics Pathways and Pitfalls (MPP) teacher professional development
program on mathematics learning for students at different levels of English lan-
guage proficiency. Half of the 36 teachers were randomized to MPP and the other
half to the control condition. Teachers randomized to the MPP condition were
taught how to use the materials and then substituted MPP for part of their mathe-
matics curriculum during the 2003–2004 school year, while control teachers used
their regular mathematics curriculum. All students received an MPP test as a pret-
est before the lessons and took the same test after the lessons as a posttest.

Posttest scores are regressed on the mean-centered pretest scores, an indicator
for treatment group (1 for MPP and 0 for control), English language learner
(ELL) status (1 for ELL and 0 for non-ELL), and the Treatment & ELL Interac-
tion Term. A varying intercept and a varying slope for ELL status are included to
allow for the cluster-randomized design. The model can be written as follows:

yij ¼ xT
ij βþ b0j þ b1jzij þ "ij;

where yij is the posttest score for the ith student of the jth teacher, xij is the cov-
ariate vector that includes the mean-centered pretest score, the treatment group
indicator, ELL status, and the interaction between ELL status and treatment, and

zij is ELL status. As usual, we assume ðb0j; b1jÞ % Nð0;SÞ and "ij % Nð0;s2
"Þ.

After dropping observations with missing values on any of the variables, data
were available on 755 students and J ¼ 36 teachers, with between 12 and 27
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students per teacher. We fit the models by ML and REML using lmer in the lme4
package and by BM using blmer in the blme package.

Table 1 presents ML, REML, and BM estimates with the default Wishart(4,(1/
2y)Id) prior with y ¼ 10'4. Both ML and REML estimates of the correlation
between b0i and b1j are '1. This implies an unrealistic perfect correlation
between the teacher-level slopes and intercepts. The BM estimate of r is '.32
and the standard deviation estimate of the varying slope for ELL status increases
from 0.71 for ML and 0.48 for REML to 3.64, a change that is within the uncer-
tainty implied by the asymptotic standard error of 2.1 (ML) or 2.2 (REML) for
that parameter. The standard deviation of the varying intercept stays similar for
ML, REML, and BM.

The fixed coefficient estimates are similar across estimation methods. The
coefficient for the interaction term between ELL and treatment changes the most
among all the fixed coefficients, but the differences are negligible considering
that the standard errors of the interaction term are greater than 4. The standard
errors of the fixed coefficient estimates of Treatment, ELL, and Treatment by
ELL are larger for BM than for ML or REML, suggesting that ML and REML
underestimate the uncertainty.

The log likelihood at the BM estimates differs from the maximum by less
than 1. Figure 5 shows the profile likelihood of r (profiling out all the other
parameters) divided by its maximum. Although the ML is attained at r ¼ '1, the

TABLE 1.
Parameter estimates for education example

ML REML BM

Fixed effect
Intercept 32.39 (2.01) 32.40 (2.07) 32.31 (2.11)
Pretest 0.56 (0.06) 0.56 (0.06) 0.56 (0.06)
Treatment 12.84 (3.15) 12.81 (3.24) 13.01 (3.30)
ELL '2.46 (2.73) '2.54 (2.77) '2.66 (3.17)
ELL & Treatment 1.00 (4.13) 1.24 (4.19) 1.56 (4.84)

Varying effect (group: teacher)
Intercept SD 8.31 (1.18) 8.62 (1.25) 8.50 (1.22)
ELL SD 0.71 (2.09) 0.48 (2.18) 3.64 (2.50)
Correlation '1.00 (2.93) '1.00 (0.00) '0.32 (0.22)
Residual SD 226.5 227.3 226.3
Log likelihood '3,153.7 '3,153.8 '3,154.2

Note. ELL ¼ English language learner; SD ¼ standard deviation; ML ¼ maximum likelihood;

REML ¼ restricted maximum likelihood; BM ¼ Bayes Modal. The ML and REML estimates imply

perfect correlation between the varying intercept and varying slope, whereas BM produces more

reasonable estimates. The log likelihood stays almost the same among the three methods. We present

results here to more decimal places than would be recommended in practice in order to display the

sometimes-small differences between the different estimates.
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profile likelihood is very flat and so the minimum (at r ¼ 1) is attained with only
an 8% decrement from the maximum. Therefore, all the values of r including
r ¼ '0.32 are well supported by the data. As is typical in such settings, there is
nothing special about the point estimate on the boundary, and it would be inap-
propriate for a researcher to use that estimate. Our BM approach gives a default
procedure that allows a classical statistician to avoid the inappropriate degenerate
estimate. A full Bayes approach using real prior information would do better, but
our BM approach takes us a bit in the right direction and has the advantage of being
fast and easy to implement.

When a researcher is interested in comparing teacher-specific effects, b0j and
b1j can be predicted by their conditional posterior means (or modes), given the
estimates of the model parameters and the data (called empirical Bayes predic-
tion or best linear unbiased prediction).

In Figure 6, scatter plots of empirical Bayes predictions of b1j versus b0j are
displayed with the proportion of ELL students of each teacher represented by the
gray scale, that is, black indicates all the students are ELL and white indicates
none are ELL. The sizes of the squares are proportional to the numbers of stu-
dents for each teacher. For ML (left), due to the estimate r̂ ¼ '1, the slopes
b1j are predicted perfectly linearly by the intercepts b0j. In contrast, BM (right)
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FIGURE 5. Profile likelihood of r. The maximum likelihood estimate of r is '1 but the

likelihood has very little information. Therefore, the Bayes modal estimate of '0.3 is also

well supported by the data.
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shows more reasonable predictions for the varying slopes and intercepts. In addi-
tion, we can observe that 18 (out of 36) white squares with a gray border fall per-
fectly on a line—these are teachers without any ELL students in their classes.
Four black squares (only three visible due to overlap) correspond to teachers with
only ELL students. The 18 groups without ELL students and the 4 groups with
only ELL students do not provide any information about the slope variance
and intercept variance, respectively, and none of the 22 groups provide
information about the correlation between the varying slope and the
intercept. This lack of information could be one of the reasons we obtain the
boundary estimates using ML and REML. As the group size increases (i.e.,
the square increases) and the proportion of ELL students increases (i.e., the
square gets darker), the empirical Bayes predictions tend to be less shrunken
toward the line formed by the white squares.

Using the fitted covariance matrix, we can calculate the marginal variances
and correlations of the posttest score given ELL status. The variance of the postt-

est scores for ELL students is Varðyijjzij ¼ 1Þ ¼ s2
1 þ s2

2 þ 2s12 þ s2
" and, simi-

larly, the variance for non-ELL student is Varðyijjzij ¼ 0Þ ¼ s2
1 þ s2

" . The

covariance between the posttest scores of two students of the same teacher is

Cov yij; yi*jjzij ¼ 1; zi*j ¼ 1
! "

¼ s2
1 þ s2

2 þ 2s12 if both students are ELL,

Cov yij; yi*jjzij ¼ 1; zi*j ¼ 0
! "

¼ s2
1 þ s12 if one student is ELL, and

Cov yij; yi*jjzij ¼ 0; zi*j ¼ 0
! "

¼ s2
1 if neither student is ELL.

FIGURE 6. Empirical Bayes predictions of varying effects. The size of each square rep-

resents nj for the jth teacher. The ratio of English language learner (ELL) students for

each teacher is shown on a gray scale, that is, black indicates all the students are ELL

and white indicates none are ELL. For maximum likelihood, b1j are predicted perfectly

linearly in b0j. On the right graph, Bayes modal estimation shows more reasonable pre-

dictions for the varying slopes and intercepts.
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Table 2 shows these model-implied marginal standard deviations and
correlations with estimates from ML and BM substituted for the parameters.
These standard deviation and correlation estimates are remarkably similar,
which also explains why the log likelihood evaluated at the BM estimates
is not much smaller than that evaluated at the ML estimates.

Simulation

We simulated data from the varying coefficient model as described in the pre-
liminary simulation for Figure 1 but with only one covariate. We explored differ-
ent values of the correlation r(0, 0.225, 0.450, 0.675, and 0.900), setting s to be a
moderate value of 0.5. With 1,000 replicated samples generated with J ¼ 5 and
n ¼ 30, we estimated the bias and root mean squared error (RMSE) for s1, s2,
and r. For ML and REML, the bias and RMSE of r̂ are based on the replicates
that generate legitimate estimates (i.e., when neither ŝ1 nor ŝ2 is zero which hap-
pened in 1.2% of the replicates for ML and 0.9% of the replicates for REML). For
BM estimation, we assigned a Wishart(4,(1/2y)I) prior on S with y ¼ 10'4.

Figure 7 shows the proportion of boundary estimates of r where 1'ð
jr̂j < 10'5Þ. When r is 0, 21% of the ML estimates and 17% of the REML
estimates have perfect correlations. As r increases, the proportion of r̂ on the bound-
ary also increases and reaches 60% for ML and 51% for REML. The BM method does
not produce any boundary estimates of r for any of the simulation conditions.

In spite of the absence of boundary estimates, the log likelihood is not reduced
substantially by using BM estimation. Investigating the difference in deviances

¼ 2½log L ŜML

! "
' log L ŜBM

! "'! "
for all the replicates, the BM method never

reduces the log likelihood by more than 2.2 from the maximum.
Figure 8 summarizes the estimated bias and RMSE of r̂; ŝ1, and ŝ2. When

r ¼ 0, the estimated bias of r̂ is almost zero for all three methods.
ML, REML, and BM all have some bias in estimating r, with BM having the

most bias (i.e., the most shrinkage toward 0), as would be expected given the

TABLE 2.
Marginal standard deviations and correlations of posttest scores given ELL status

ML BM

SD of ELL student 16.86 17.06
SD of non-ELL student 17.19 17.26
Correlation of (ELL, ELL) 0.20 0.22
Correlation of (ELL, non-ELL) 0.22 0.21
Correlation of (non-ELL, non-ELL) 0.23 0.24

Note. ELL¼ English language learner; BM¼Bayes modal; SD¼ standard deviation; ML¼maximum

likelihood. These values do not differ much between ML and BM although the slope standard deviation

estimate and correlation estimate increased notably from ML to BM.

Weakly Informative Prior

152

 at COLUMBIA UNIV on April 30, 2015http://jebs.aera.netDownloaded from 

http://jebs.aera.net


regularization from the Wishart prior that squeezes r̂ toward zero as seen in
the shape of the prior density for r with d ¼ 2 in Figure 3. However, BM gives
the smallest estimated RMSE of r̂. The estimated bias of ŝ1 and ŝ2 is similar
across the different values of r for all the estimation methods. The BM esti-
mates of the standard deviations are less biased and have smaller estimated
RMSE than ML and REML.

The coverage of 95% confidence intervals for b0 and b1 does not change much
with r. The average coverage of the BM confidence intervals is .940 for b0 and
.943 for b1. The coverage for REML is about the same as that for BM, whereas
ML shows slightly lower coverage with averages of .935 for b0 and .937 for b1.

Conclusion

For the hierarchical regression model, particularly with several varying coef-
ficients, degenerate covariance matrix estimates do not have a practical interpre-
tation. Unfortunately, such boundary estimates commonly arise in ML estimation
because there is often little information on these parameters when there is only a

moderate number of groups. In addition, when Ŝ is singular, underestimated stan-
dard errors of the fixed coefficients make the researcher overconfident about the
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effect of the covariates. When a boundary estimate is attained but no prior infor-
mation is available for S, the BM estimator using the default Wishart prior is rec-

ommended because it ensures strictly positive definite Ŝ and is weakly
informative at the same time. The modified gllamm from www.gllamm.org for
Stata and blme package for R allow straightforward application of our method
for practitioners.

In varying-slope models, changing the location and scale of the covariates
that have varying slopes implies that S must change to produce an equivalent
model. For example, for longitudinal data, we might want to transform the
time variable to have a value 0 at the initial time point. In this case, subtract-
ing a constant from the covariate changes the variance of the varying inter-
cepts and the correlation between intercepts and slopes. Although ML and
REML will yield equivalent models after linearly transforming the covariate,
this is no longer true for BM estimation, which pulls the correlation toward 0.
When using Bayesian regularization in this setting, it therefore becomes more
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FIGURE 8. Bias and root mean squared error of ŝ1, ŝ2, and r̂ with J ¼ 5 and n ¼ 30 of

the varying-coefficient model with s1 ¼ s2 ¼ .5 and r in the grid. In our simulation, with

r set to various positive values, the bias values are all negative, so we display absolute

values to make the graphs easier to read given the convention that high values of bias are

bad. Bayes modal (BM) has higher bias for r (i.e., shrinking the estimate toward 0) com-

pared to maximum likelihood (ML) and restricted maximum likelihood (REML), but the

RMSE is smaller for BM. For both s1 and s2, BM has smaller bias and RMSE than

ML and REML.
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important to choose meaningful centering points for the covariates with vary-
ing coefficients.
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